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Abstract: The most recent video coding standard, High Efficiency Video Coding (HEVC), is able
to significantly improve the compression performance at the expense of a huge computational
complexity increase with respect to its predecessor, H.264/AVC. Parallel versions of the HEVC
encoder may help to reduce the overall encoding time in order to make it more suitable for practical
applications. In this work, we study two parallelization strategies. One of them follows a coarse-grain
approach, where parallelization is based on frames, and the other one follows a fine-grain approach,
where parallelization is performed at subpicture level. Two different frame-based approaches have
been developed. The first one only uses MPI and the second one is a hybrid MPI/OpenMP algorithm.
An exhaustive experimental test was carried out to study the performance of both approaches in order
to find out the best setup in terms of parallel efficiency and coding performance. Both frame-based
and subpicture-based approaches are compared under the same hardware platform. Although
subpicture-based schemes provide an excellent performance with high-resolution video sequences,
scalability is limited by resolution, and the coding performance worsens by increasing the number of
processes. Conversely, the proposed frame-based approaches provide the best results with respect
to both parallel performance (increasing scalability) and coding performance (not degrading the
rate/distortion behavior).

Keywords: HEVC; video coding; parallel encoding; shared memory; distributed shared memory

1. Introduction

The Joint Collaborative Team on Video Coding (JCT-VC), composed of experts from the ISO/IEC
Moving Picture Experts Group (MPEG) and the ITU-T Video Coding Experts Group (VCEG),
has developed the most recent video coding standard: High Efficiency Video Coding (HEVC) [1].
The emergence of this new standard makes it possible to deal with current and future multimedia
market trends, such as 4K- and 8K-definition video content. HEVC improves coding efficiency in
comparison with the H.264/AVC [2] High profile, yielding the same video quality at half the bit rate [3].
However, this improvement in terms of compression efficiency is bound to a significant increase in the
computational complexity. Several works about complexity analysis and parallelization strategies for
the HEVC standard can be found in the literature [4–6]. Many of the parallelization research efforts
have been conducted on the HEVC decoding side. In [7], the authors present a variation of Wavefront
Parallel Processing (WPP), called Overlapped Wavefront (OWF), for the HEVC decoder, where the
decoding of consecutive pictures is overlapped. In [8], the authors combine tiles, WPP, and SIMD
(Single Instruction, Multiple Data) instructions to develop an HEVC decoder which is able to run
in real time. Nevertheless, the HEVC encoder’s complexity is several orders of magnitude greater
than the HEVC decoder’s complexity. A number of works can also be found in the literature about
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parallelization on the HEVC encoder side. In [9], the authors propose a fine-grain parallel optimization
in the motion estimation module of the HEVC encoder that allows to compute the motion vector
prediction in all Prediction Units (PUs) of a Coding Unit (CU) at the same time. The work presented
in [10] focuses in the intra prediction module, removing data dependencies between sub-blocks and
yielding interesting speed-up results. Some recent works focus on changes in the scanning order.
For example, in [11], the authors propose a frame scanning order based on a diamond search, obtaining
a good scheme for massive parallel processing. In [12], the authors propose to change the HEVC
deblocking filter processing order, obtaining time savings of up to 37.93% over manycore processors,
with a negligible loss in coding performance. In [13], the authors present a coarse grain parallelization
of the HEVC encoder based on Groups of Pictures (GOPs), especially suited for distributed memory
platforms. In [14], the authors compare the encoding performance of slices and tiles in HEVC. In [15],
a parallelization of the HEVC encoder at slice level is evaluated, obtaining speed-ups of up to 9.8x
for All Intra coding mode and 8.7x for Low-Delay B, Low-Delay P, and Random Access modes, using
12 cores with a negligible rate/distortion (R/D) loss. In [16], two parallel versions of the HEVC
encoder using slices and tiles are analyzed. The results show that the parallelization of the HEVC
encoder using tiles outperforms the parallel version that uses slices, both in parallel efficiency and
coding performance.

In this work, we study two different parallelization schemes: the first one follows a coarse-grain
approach, where parallelization is based on frames, and the other one follows a fine-grain approach,
focused on the parallelization at subpicture level (tile-based and slice-based). After an analytical
study of the presented approaches using the HEVC reference software, called HM (HEVC test Model),
data dependencies are identified to determine the most adequate data distribution among the available
coding processes. The proposed approaches have been exhaustively analyzed to study both the parallel
and the coding performance.

The rest of the paper is organized as follows. In Sections 2 and 3, subpicture-based and frame-based
parallelization schemes are presented, respectively. In Section 4, experimental results are presented and
analyzed. Finally, several conclusions are drawn in Section 5.

2. Subpicture-Based Parallel Algorithms

In this section, two parallel algorithms based on both tile and slice partitioning are analyzed.
Slices are fragments of a frame formed by correlative (in raster scan order) Coding Tree Units (CTUs)
(see Figure 1). In the developed slice-based algorithm, we divide a frame into as many slices as the
number of available parallel processes. All the slices of a frame have the same number of CTUs, except
for the last one, whose size corresponds to the number of CTUs remaining in the frame. The process
used to calculate the size of each slice is shown in Algorithm 1. This algorithm provides load balances
above 99% in most of the performed experiments. If the height (or width) of the frame (in pixels)
is not a multiple of the CTU size, there will be some incomplete CTUs (see lines number 3 and 4 in
Algorithm 1). Besides, the size of the last slice of a frame will always be equal or less than the size of
the rest of slices (see line 7).

Algorithm 1 Computation of the size of the slices

1: Obtain the number of processes: p
2: Obtain the width (or height) of a CTU: s
3: Frame width (number of CTUs): f w = ceil(width/s)
4: Frame height (number of CTUs): f h = ceil(height/s)
5: Total number of CTUs per frame: t = f w ∗ f h
6: Regular slice size: ns = ceil(t/p)
7: Last slice size: t− (ns ∗ (p− 1))
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Figure 1. Layout of a Full HD frame with 8 slices (7 slices of 64 CTUs and 1 slice of 62 CTUs).

Figure 2 shows the assignment of the slices to the encoding processes performed in our parallel
slice-based algorithm. Each parallel process (Pi) encodes one slice (Si) of the current frame (Fk).
This coding procedure is a synchronous process in which a synchronization point is located after the
slice encoding procedure. As depicted in Algorithm 1, the size of the last slice is often smaller than the
size of the rest of slices, and this fact decreases, theoretically, the maximum achievable efficiency. In the
worst cases in our experiments, the theoretical efficiency reaches 94.5% (a drop off of 5.5%) for a video
resolution of 832× 480, 98.9% for a video resolution of 1280× 720, 99.4% for a video resolution of
1920× 1080, and 99.2% for a video resolution of 2560× 1600. In Figure 1, we show the slice partitioning
of a Full HD frame (1920× 1080 pixels), divided into 8 slices. Considering a CTU size of 64× 64 pixels,
the frame height is 17 CTUs, the frame width is 30 CTUs, and the total number of CTUs per frame is
510. Following Algorithm 1, the size of each slice is equal to 64 CTUs, except for the last one, which has
a size of 62 CTUs, which entails a theoretical load balance of 99.6%.

Figure 2. Slice-based parallel algorithm.

The other subpicture-based parallel algorithm presented in this work is based on tiles. Tiles are
rectangular divisions of a video frame which can be independently encoded and decoded. This is a
new feature included in the HEVC standard, which was not present in previous standards. In our
tile-based parallel algorithm, depicted in Figure 3, a set of encoding processes (Pi) encode a single
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frame in parallel. Each frame (Fk) is split in as many tiles (Ti) as the number of processes to use, in such
a way that each node processes one tile. When every process has finished the encoding of its assigned
tile, synchronization is carried out in order to properly write the encoded bitstream and thus proceed
with the next frame.

Figure 3. Tile-based parallel algorithm.

In all the performed experiments, each CTU covers an area of 64× 64 pixels and each tile consists of
an integer number of CTUs. For a specific frame resolution, we can obtain multiple and heterogeneous
tile partition layouts. For example, the partition of a frame into 8 tiles can be done by dividing the
frame into 1 column by 8 rows of CTUs (1× 8), 8 columns by 1 row (8× 1), 2 columns by 4 rows (2× 4),
and 4 columns by 2 rows (4× 2). In addition, the width of each tile column and the height of each
tile row can be set up independently, so we can have a plethora of symmetric and asymmetric tile
partition layouts. In the examples shown in Figure 4, a Full HD frame is divided into 8 tiles in different
partitions: four homogeneous partitions (1× 8, 8× 1, 2× 4, 4× 2) and one heterogeneous partition
(4× 2 heterogeneous).

In our experiments, we have used the tile column widths and the tile row heights that produce
the most homogeneous tile shapes. Even though we have selected the most homogeneous partitions,
as every tile must have an integer number of CTU rows and columns, a tile layout where all the nodes
process the same number of CTUs is not always possible. For example, in Figure 4b, the two leftmost
tile columns have a width of 3 CTUs, whereas the rest of the tile columns have a width of 4 CTUs.
Moreover, even when we get a perfect workload balanced layout, in which each process encodes
the same number of CTUs, we cannot guarantee an optimal processing work balance, because the
computing resources needed to encode every single CTU may not be exactly the same, as different
tiles belonging to the same frame may have different spatial and temporal complexities.

Additionally, we have to take into account that different layouts produce different encoded
bitstreams, with different R/D performance, because the existing redundancy between nearby CTUs
belonging to different slices or tiles cannot be exploited. In Figure 5, the marked CTUs do not have
the same neighbor CTUs available for prediction that they would have in a frame without slice
partitions. For a Full HD frame divided into 8 slices, there are 217 CTUs (out of 510) in this situation.
This represents a 42.5% of the total. This percentage increases as the number of slices does. The R/D
performance depends on the number of CTU neighbors which are not available to exploit the spatial
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redundancy. This effect can be seen in Figure 6a, where lighter gray squares are CTUs to be coded,
crossed darker gray squares are non-available neighbor CTUs, and darker gray squares are neighbor
CTUs available to perform the intra prediction. In this figure, the acronyms AL, A, AR, and L
correspond, respectively, to Above-Left, Above, Above-Right, and Left neighbor CTUs. In the worst
case (CTUs marked with a Γ symbol), no neighbor CTUs are available for prediction.

(a) (b)

(c) (d)

(e)

Figure 4. Five different tile layouts (4 homogeneous + 1 heterogeneous) for the partitioning of a Full
HD frame into 8 tiles. (a) 1× 8; (b) 8× 1; (c) 2× 4; (d) 4× 2; (e) 4× 2 heterogeneous.

Figure 5. Partitioning of a Full HD frame into 8 slices (marked Coding Tree Units (CTUs) do not have
all its neighbors available for prediction).
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The tile layout also affects both the parallel and the encoder performance. In order to obtain
a good parallel performance we should get a balanced computational load. In Table 1, we can see
the computational workload, in number of CTUs, assigned to each process, for all the tile layouts
presented in Figure 4. The maximum theoretical efficiency that can be achieved is 94%, for the layout
based on columns (8× 1).

Table 1. Workload, in number of CTUs, for the partitioning of a Full HD frame into 8 tiles.

Layout P1 P2 P3 P4 P5 P6 P7 P8 Efficiency

1 × 8 60 60 60 60 60 60 90 90 71%
8 × 1 51 51 68 68 68 68 68 68 94%
2 × 4 60 60 60 60 60 60 75 75 85%
4 × 2 56 56 64 64 63 63 72 72 89%

4 × 2 ht. 8 20 64 28 26 65 208 91 31%

A CTU is predicted using previously encoded CTUs, and we have to consider that (a) the search
range is composed by the neighboring adjacent CTUs, (b) the CTUs are encoded in raster scan order
inside a slice or tile partition, and (c) the adjacent neighbors from other slice or tile partitions cannot
be used. Considering all these conditions, we can conclude that all CTUs which are located at the
border of a vertical or a horizontal tile have their encoding modified because they cannot be predicted
using all the desirable neighboring CTUs. Table 2 shows the total number of CTUs that are affected by
this effect due to tile partitioning in a Full HD frame divided into 8 tiles. Square-like tile partitions
(2× 4 and 4× 2) have fewer CTUs affected than column-like (8× 1) or row-like (1× 8) tile layouts.
The heterogeneous tile layout (4× 2 h) is affected in a similar way than the square-like tile layouts,
but, obviously, this type of heterogeneous layouts should only be used in heterogeneous multiprocessor
platforms, where the computing power differs between the available processors.

Table 2. Number of CTUs with their encoding modified, for the partitioning of a Full HD frame into
8 tiles.

Layout P1 P2 P3 P4 P5 P6 P7 P8 Total

1 × 8 0 30 30 30 30 30 30 30 210
8 × 1 16 33 33 33 33 33 33 17 231
2 × 4 3 4 18 18 18 18 19 19 117
4 × 2 7 15 15 8 18 18 18 18 117

4 × 2 ht. 3 7 7 4 14 29 40 19 123

Looking at the values in Table 2, we could think that the row-like layout may have a better R/D
performance than the column-like layout, because the row-like layout has fewer CTUs affected by
the absence of some neighbors for the prediction. However, we should take into consideration that
the encoding performance decrease produced in each CTU depends on its position inside the slice
or tile. In the intra prediction procedure, the neighbor CTUs used, if available, are the AR, the A,
the AL, and the L neighbor CTUs (see Figure 6). Figures 6b,c show the available CTUs to perform the
prediction. The number of available CTUs for the prediction procedure ranges from 0 to 4. As shown
in Table 2, the number of CTUs affected in the row-like tile layout (1× 8) is 210, whereas, for the
column-like tile layout (8× 1), this number rises up to 231. In the row-like tile layout (Figure 7a), most
of the CTUs can perform the intra prediction using only 1 CTU neighbor (see O symbol in Figure 6b),
whereas, in the column-like tile layout (Figure 7b), approximately half of the affected CTUs can use
up to 3 neighboring CTUs (see Ω symbol in Figure 6c). In Section 4, we will analyze the effect of tile
layout partitioning in both R/D and parallel performance.

Both slice and tile parallel algorithms include synchronization processes in such a way that
only one process reads the next frame to be encoded and stores it in shared memory, which reduces
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both drive disk accesses and memory requirements. Obviously, a synchronization process before
writing or transmitting an encoded frame is also necessary. Therefore, both subpicture parallel
approaches are designed for shared memory platforms, since all processes share both the original and
the reconstructed frames.

(a)

(b) (c)

Figure 6. Searching area to perform the CTU prediction depending of the position of the borders in a
Full HD frame. (a) 8 slices; (b) 1 × 8 tiles; (c) 8 × 1 tiles.

(a) (b)

Figure 7. Marked CTUs with the coding affected, in column and row tile layouts for the partitioning of
a Full HD frame into 8 tiles. (a) 1 × 8; (b) 8 × 1.

3. Frame-Based Parallel Algorithms

Now, we will depict the parallel algorithm for the HEVC encoder at frame level, named DMG-AI,
which has been specifically designed for the AI coding mode (Figure 8). A full description of
the algorithm can be found in [13]. In the current paper, the DMG-AI algorithm is tested on an
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heterogeneous memory framework, managed by the Message Passing Interface (MPI) [17], consisting
on N computing nodes (distributed memory architecture). Each node has a shared memory architecture.
At each one of the N available nodes, R MPI processes are executed (or mapped) in such a way that
every MPI process (Pi,j(i = 1 . . . N, j = 1 . . . R)) of the NxR available processes, encodes one different
frame. Firstly, each coding process (Pi,j) sends an MPI message to the coordinator process (Pcoord)
requesting a frame to encode. Note that, in the AI encoding mode, all frames are encoded as I frames,
i.e., without using previously encoded frames, making use only of the spatial redundancy.

Figure 8. DMG-AI parallel algorithm.

The coordinator process is responsible for the assignation of the video data to be encoded to the
rest of processes, and for the collection of both statistical and encoded data in order to compose the
final bitstream. The coordinator process performs the distribution of the workload by sending one
different frame to each coding process. When the coding process Pi,j finishes the encoding of its first
received frame (Fi,j,0), it sends the resulting bitstream to the coordinator process, which assigns a new
frame (Fi,j,1) to the coding process. This procedure is repeated until all frames of the video sequence
have been encoded. In this algorithm, when a coding process becomes idle, it is immediately assigned
a new frame to encode, so there is no need to wait until the rest of the processes have finished their
own work. This fact provides a good workload balance, and, as a consequence, excellent speed-up
values are obtained.

This frame-based algorithm is completely asynchronous, so the order in which each encoded
frame is sent to the coordinator process is not necessarily the frame rendering order, and the coordinator
process therefore must keep track of the encoded data to form the encoded bitstream in the suitable
rendering order. The coordinator process is mapped onto a processor that also runs one coding process,
because the computational load of the coordinator process is negligible. We want to remark that the
DMG-AI algorithm generates a bitstream that is exactly the same as the one produced by the sequential
algorithm; therefore, there is no R/D degradation.
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The previously described DMG-AI algorithm presents the following drawbacks: (a) a queuing
system to manage the distributed resources must be installed in order to correctly map the MPI
processes, (b) the number of MPI messages increases as the number of MPI processes does and,
depending on the video frame resolution, the messages are often quite small, and (c) the distribution
of processes between the computing nodes (i.e., the number of MPI processes per node) is performed
before the beginning of the execution time through the queuing system, which in our case is the
Sun Grid Engine. As previously stated, the DMG-AI algorithm includes an automatic workload
balance system, but the algorithm itself is not able to change the process distribution pattern during
execution time.

In order to avoid the aforementioned drawbacks, we propose the new hybrid MPI/OpenMP
algorithm named DSM-AI, which does not need a specific queuing system and which outperforms
the pure MPI proposal (DMG-AI). The DSM-AI algorithm, depicted in Figure 9, follows a structure
that is similar to the DMG-AI algorithm, but only one MPI process is mapped into each computing
node, regardless of the number of computing nodes and/or the number of available cores of each
computing node. In the DSM-AI parallel algorithm, the intra-node parallelism is exploited through
the fork–join thread model provided by OpenMP. The number of created threads can be specified by
a fixed parameter or can be obtained during execution time, depending on the current state of the
multicore processor (computing node), as shown in Algorithm 2.

Figure 9. DSM-AI parallel algorithm.
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Algorithm 2 Setting the number of threads in the DSM-AI algorithm
1: In coding MPI process
2: {
3: Read parameter NoT (Number of Threads)
4: if NoT > 0 then

5: Send message to the coordinator process requesting NoT frames
6: else if NoT = 0 then

7: Request the current optimal number of threads (CNoT)
8: Set NoT = CNoT
9: Send message to the coordinator process requesting NoT frames

10: end if
11: Receive message with the number of frames to code (NoF)
12: if NoF = 0 then

13: Finish coding procedure
14: else if (NoT ≥ NoF) then

15: Create NoF threads to code NoF frames
16: else

17: Exit with error
18: end if
19: }
20:
21: In coordinator MPI process
22: {
23: repeat

24: Wait for a workload requesting message with NoT parameter
25: if Remaining frames > NoT then

26: Set NoF = NoT
27: Send message with first frame to code and NoF
28: else if Remaining frames ≤ NoT then

29: Set NoF = remaining frames
30: Send message with first frame to code and NoF, intrinsically includes end of coding message
31: else if Remaining frames = 0 then

32: Set NoF = 0
33: Send end of coding message
34: end if
35: until Have sent end of coding message to all MPI coding processes
36: }

In Algorithm 2, when the parameter “NoT” (Number of Threads) is greater than zero, both the
DSM-AI and the DMG-AI algorithms work in a similar way and their coding mapping procedures
are the same, but the number of MPI communications is lower in the DSM-AI algorithm than in the
DMG-AI algorithm. Moreover, no specific queuing system is required by the DSM-AI algorithm.
When “NoT” is greater than zero, each MPI process encodes “NoT” consecutive frames. For that
purpose, “NoT” threads are created in an OpenMP parallel section. On the other hand, when the
parameter “NoT” is equal to zero, the number of threads created to encode consecutive frames depends
on the current state of the multicore processor (i.e., the number of available threads). In this case,
the current optimal number of threads (“CNoT”) is requested to the system, and this number is added
to the MPI message, which demands the new block of frames to be encoded. Therefore, each MPI
process encodes a block of consecutive frames, but the size of these blocks is set up by the coding
process instead of the coordinator process.
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The DSM-AI algorithm is not totally asynchronous, because the processing of the OpenMP threads
is synchronous. Note that the MPI coding process sends an MPI message to the coordinator process,
and this message includes the encoded data provided by all the OpenMP processes, i.e., the OpenMP
parallel section must be already closed. However, the bitstream generated by the DSM-AI algorithm
and by the DMG-AI algorithm, as well as the sequential algorithm, is exactly the same.

The DSM-AI algorithm has been designed in order to make an efficient use of hardware platforms
where other processes may be running (i.e., non-exclusive use computing platforms). However,
when the optimal number of threads per computing node is a large number, the synchronization
processes may reduce the parallel efficiency. Furthermore, in order to reduce the disk reading
contentions, the frame reading processes are serialized. In order to solve that issue, we have
developed Algorithm 3, which is used jointly with Algorithm 2. Algorithm 3 limits the number
of OpenMP threads per MPI process. When the “NoT” parameter is negative, the absolute value of
“NoT” sets the maximum number of OpenMP threads in each MPI process. In this way, we can reduce
the number of threads per MPI node. Moreover, with the use of a queuing system, we can correctly
map more than one MPI process into each computing node, depending on the “NoT” value.

Algorithm 3 Improved setting the number of threads in the DSM-AI algorithm
1: In coding MPI process
2: {
3: Read parameter NoT (Number of Threads)
4: if NoT < 0 then

5: Set NoT = |NoT| frames
6: Request the current optimal number of threads (CNoT)
7: if CNoT > NoT then

8: Send message requesting NoT frames
9: else if CNoT = 0 then

10: Send message requesting 1 frame
11: else if CNoT <= NoT then

12: Send message requesting CNoT frames
13: else

14: Exit with error
15: end if
16: Receive message with number of frames to code (NoF)
17: end if
18: }

4. Results and Discussion

In this section, we present the evaluation of the parallel algorithms detailed in Sections 2 and 3,
in terms of parallel and R/D performance. In order to implement the algorithms presented in this
work, we have modified the HEVC reference software HM v16.3 [18]. For the subpicture-based parallel
algorithms, the OpenMP API v3.1 [19] has been used, whereas for the frame-based algorithms we
have used MPI v2.2 [17]. The parallel platform used in our experiments is an HP Proliant SL390s G7
(a distributed memory multiprocessor with 14 nodes). Each node is equipped with two Intel Xeon
X5660 and 48 GB of RAM. Each X5660 includes six processing cores at 2.8 GHz. QDR Infiniband has
been used as the communication network. The video sequences used in the experimental tests and
their characteristics are shown in Table 3. Four different values of the Quantization Parameter (QP)
have been used in the experiments, ranging from low compression rates to high compression rates
(22, 27, 32, 37).
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Table 3. Test video sequences.

Acronym Video Resolution Frame Rate Total Number
Sequence (Pixels) (Hz.) of Frames

TRAFFI Traffic 2560 × 1600 30 150
PEOPON PeopleOnStreet 2560 × 1600 30 150
PARKSC ParkScene 1920 × 1080 24 240
TENNIS Tennis 1920 × 1080 24 240
FOURPE FourPeople 1280 × 720 60 600
KRI&SA Kristen&Sara 1280 × 720 60 600
PARTSC PartyScene 832 × 480 50 500
BASKDR BasketballDrill 832 × 480 50 500

4.1. Subpicture Parallel Algorithms Analysis

First, we will analyze both the parallel and the coding performance of the parallel algorithm based
on slice partitioning. As stated in Section 2, slice partitioning may slightly limit the parallel efficiency
that can be achieved. Regarding the coding performance, in most cases, the horizontal borders inserted
by the slice partitioning cause a reduction in the prediction searching area of up to 75%. Moreover,
each slice inserts a data header in the bitstream, which reduces the R/D performance.

In Table 3, the speed-up results for the slice-based parallel algorithm are shown. As can be
seen, good speed-up values are achieved, but the parallel efficiency slightly decreases as the number
of processes increases. Note that, when the searching area is reduced for most of the CTUs that
belong to a slice, the computational load associated with that slice decreases. As shown in Figure 5,
the computational load for the first slice remains unaltered. The difference, in computational load,
increases as the size of slices decreases, i.e., as the number of processes increases.

Table 4. Speed-up for the slice-based parallel algorithm.

Speed-Up (QPs)

NP QP = 37 QP = 32 QP = 27 QP = 22

Traffic

2P 1.92 1.85 1.84 1.87
4P 3.80 3.62 3.64 3.66
6P 5.55 5.36 5.33 5.37
8P 7.22 6.90 6.86 6.90
9P 8.04 7.76 7.68 7.41
10P 8.95 8.63 8.59 8.57

ParkScene

2P 1.93 1.91 1.94 1.94
4P 3.75 3.72 3.75 3.75
6P 5.46 5.48 5.57 5.44
8P 7.12 7.07 7.13 7.34
9P 8.00 7.92 7.96 7.65
10P 8.85 8.75 8.96 8.93

FourPeople

2P 1.81 1.81 1.79 1.82
4P 3.52 3.42 3.30 3.28
6P 4.98 4.83 4.68 4.69
8P 6.80 6.54 6.22 6.26
9P 7.42 7.20 6.89 7.01
10P 8.47 8.14 7.88 7.88
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Table 3. Cont.

Speed-Up (QPs)

NP QP = 37 QP = 32 QP = 27 QP = 22

PartyScene

2P 1.90 1.92 1.92 1.91
4P 3.49 3.46 3.54 3.61
6P 4.91 5.00 5.02 5.12
8P 6.90 6.80 6.88 7.04
9P 7.49 7.30 7.43 7.55
10P 7.98 7.97 8.04 8.24

Table 3 presents the coding performance in PSNR and bit rate for the slice-based parallel algorithm.
As expected, the PSNR values worsen as the number of slices increases. The inclusion of a data header
per slice has a variable impact on the bit rate depending on the number of processes, the video
resolution, and the compression rate. As the size of the slice header is fixed, the bit rate increment
becomes greater as the number of processes increases. Additionally, for the configurations which
produce low bit rates (low resolution and high compression rates), the percentage of bit rate increase
is greater than for the rest of configurations. As shown in Table 3, the worst case produces a 10.68%
of bit rate increment for PartyScene video sequence (the lowest resolution video sequence tested),
10 processes (the maximum number of processes used), and a QP value of 37 (the highest compression
rate evaluated).

Table 4. Coding performance of the slice-based parallel algorithm.

QP = 37 QP = 22

Y-PSNR Bitrate Bitrate Y-PSNR Bitrate Bitrate

NP (dB) (kbps) Increment (dB) (kbps) Increment

Traffic

1P 34.0490 18,438 43.2888 101,513
2P 34.0469 18,464 0.14% 43.2883 101,559 0.05%
4P 34.0428 18,520 0.45% 43.2873 101,680 0.16%
6P 34.0385 18,560 0.66% 43.2849 101,748 0.23%
8P 34.0336 18,627 1.02% 43.2845 101,902 0.38%
9P 34.0319 18,658 1.19% 43.2837 101,980 0.46%
10P 34.0293 18,669 1.25% 43.2815 101,984 0.46%

ParkScene

1P 32.7629 7271 41.6499 52,608
2P 32.7617 7291 0.27% 41.6496 52,647 0.07%
4P 32.7551 7319 0.66% 41.6485 52,710 0.19%
6P 32.7514 7354 1.14% 41.6473 52,766 0.30%
8P 32.7470 7388 1.61% 41.6463 52,843 0.45%
9P 32.7430 7397 1.73% 41.6451 52,858 0.47%
10P 32.7399 7413 1.95% 41.6446 52,897 0.55%

FourPeople

1P 35.1856 6866 43.7515 30,072
2P 35.1721 6920 0.77% 43.7487 30,190 0.39%
4P 35.1617 7010 2.09% 43.7465 30,371 0.99%
6P 35.1503 7089 3.25% 43.7425 30,538 1.55%
8P 35.1298 7182 4.60% 43.7408 30,750 2.25%
9P 35.1336 7272 5.90% 43.7366 30,882 2.69%
10P 35.1190 7316 6.55% 43.7354 30,980 3.02%
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Table 3. Cont.

QP = 37 QP = 22

Y-PSNR Bitrate Bitrate Y-PSNR Bitrate Bitrate

NP (dB) (kbps) Increment (dB) (kbps) Increment

PartyScene

1P 32.6281 3265 41.6476 20,711
2P 32.6255 3310 1.36% 41.6471 20,831 0.58%
4P 32.6172 3386 3.71% 41.6417 21,017 1.48%
6P 32.6072 3486 6.75% 41.6407 21,268 2.69%
8P 32.6091 3558 8.97% 41.6365 21,421 3.43%
9P 32.6063 3596 10.13% 41.6363 21,524 3.93%
10P 32.6067 3614 10.68% 41.6361 21,549 4.05%

Now, we analyze the performance of the tile-based parallel algorithm in order to see how the
tile partitioning affects both the speed-up and the coding efficiency. First of all, we will analytically
study the influence of the frame partition into tiles, i.e., how the nature of the video data may affect the
algorithm performance. As stated in Section 2, we have selected the most homogeneous tile partitions
for each number of processes that we have tested (2, 4, 6, 8, 9, and 10). In Table 4, we show the
tile partitions (layouts) used for the 4 different video resolutions tested (2560× 1600, 1920× 1080,
1280× 720, 832× 480). The AvgCTU column indicates the average number of CTUs per tile. For the
1P layout, this column indicates the total number of CTUs per frame. The MaxCTU column shows
the number of CTUs of the biggest tile for every layout. With the values of these two columns, we
can obtain the percentage of workload balance (Bal %) of each partition. A load balance percentage
of 100% indicates that all the tiles of one frame have the same number of CTUs, so the workload is
perfectly balanced for all processes. Low values in this column (e.g., in the 1× 10 layout for 1280× 720
resolution) mean a heavily unbalanced workload distribution, which will probably lead to low parallel
efficiencies. As we will see later, the election of an unbalanced layout may lead to underwhelming
results. An N/A value in the table means that the corresponding layout is not possible for that
resolution. For example, a division of a frame using a 1× 10 layout (1 column, 10 rows) is not possible
for the 832× 480 resolution, where there are only 8 rows of CTUs in a frame.

Now we will verify if the above analysis is empirically consistent. In Tables 5 and 6, we present
the encoding speed-up evolution for Traffic, ParkScene, FourPeople, and PartyScene video sequences,
respectively. A speed-up of up to 9.35x is obtained when 10 processes are used. Note that, for a
particular number of parallel processes, different speed-ups are obtained. This is mainly due to the fact
that some tile partition layouts produce an unbalanced processing workload. For example, for a video
resolution of 2560× 1600, a frame consists of 40× 25 CTUs of 64× 64 pixels. If we divide the frame
using the 10× 1 layout, then each of the 10 processes will have to encode the same number of CTUs
(4× 25 = 100 CTUs). This means a perfectly balanced workload (Bal% = 100%). But if we divide the
frame using the 1 × 10 layout, then 5 processes will have to encode 40× 2 = 80 CTUs, and the other 5
processes will have to encode 40× 3 = 120 CTUs, which implies a 50% increase in CTUs (Bal% = 83%).
Using the 1× 10 layout, a speed-up of 7.77x is obtained for the Traffic video sequence, whereas for the
10× 1 layout we obtain a speed-up of 9.35x. Generally, tile partitioning layouts based on columns of
CTUs or on square tiles obtain better parallel performance.
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Table 4. Tile partitions and percentage of load balance.

NP Layout Avg. CTU Max. CTU Bal. (%) Avg. CTU Max. CTU Bal. (%)

2560 × 1600 1920 × 1080

40 × 25 CTUs 30 × 17 CTUs

1P 1 × 1 1000 1000 100% 510 510 100%
2P 1 × 2 500 520 96% 255 270 94%

2 × 1 500 500 100% 255 255 100%
4P 1 × 4 250 280 89% 127.5 150 85%

2 × 2 250 260 96% 127.5 135 94%
4 × 1 250 250 100% 127.5 136 94%

6P 1 × 6 166.7 200 83% 85 90 94%
2 × 3 166.7 180 93% 85 90 94%
3 × 2 166.7 182 92% 85 90 94%
6 × 1 166.7 175 95% 85 85 100%

8P 1 × 8 125 160 78% 63.8 90 71%
2 × 4 125 140 89% 63.8 75 85%
4 × 2 125 130 96% 63.8 72 89%
8 × 1 125 125 100% 63.8 68 94%

9P 1 × 9 111.1 120 93% 56.7 60 94%
3 × 3 111.1 126 88% 56.7 60 94%
9 × 1 111.1 125 89% 56.7 68 83%

10P 1 × 10 100 120 83% 51 60 85%
2 × 5 100 100 100% 51 60 85%
5 × 2 100 104 96% 51 54 94%

10 × 1 100 100 100% 51 51 100%

1280 × 720 832 × 480

20 × 12 CTUs 13 × 8 CTUs

1P 1 × 1 240 240 100% 104 104 100%
2P 1 × 2 120 120 100% 52 52 100%

2 × 1 120 120 100% 52 56 93%
4P 1 × 4 60 60 100% 26 26 100%

2 × 2 60 60 100% 26 28 93%
4 × 1 60 60 100% 26 32 81%

6P 1 × 6 40 40 100% 17.3 26 67%
2 × 3 40 40 100% 17.3 21 83%
3 × 2 40 42 95% 17.3 20 87%
6 × 1 40 48 83% 17.3 24 72%

8P 1 × 8 30 40 75% 13 13 100%
2 × 4 30 30 100% 13 14 93%
4 × 2 30 30 100% 13 16 81%
8 × 1 30 36 83% 13 16 81%

9P 1 × 9 26.7 40 67% N/A N/A N/A
3 × 3 26.7 28 95% 11.6 15 77%
9 × 1 26.7 36 74% 11.6 16 72%

10P 1 × 10 24 40 60% N/A N/A N/A
2 × 5 24 30 80% 10.4 14 74%
5 × 2 24 24 100% 10.4 12 87%

10 × 1 24 24 100% 10.4 16 65%
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Table 5. Speed-up evolution for high-resolution video sequences for the tile-based parallel algorithm.

NP Layout Speed-Up

QP = 22 QP = 27 QP = 32 QP = 37

Traffic (2560 × 1600)

2P 1 × 2 1.90 1.87 1.92 1.97
2 × 1 1.98 1.93 1.87 1.97

4P 1 × 4 3.79 3.70 3.72 3.86
2 × 2 3.86 3.73 3.77 3.81
4 × 1 3.64 3.75 3.77 3.86

6P 1 × 6 5.35 5.50 5.37 5.37
2 × 3 5.80 5.66 5.60 5.76
3 × 2 5.56 5.40 5.48 5.59
6 × 1 5.15 5.31 5.39 5.55

8P 1 × 8 7.11 6.76 6.60 6.63
2 × 4 6.74 7.04 7.06 7.38
4 × 2 7.00 7.21 7.34 7.54
8 × 1 7.36 7.36 7.42 7.58

9P 1 × 9 7.57 7.23 7.33 7.56
3 × 3 7.76 7.63 7.76 8.02
9 × 1 7.42 7.28 7.43 7.78

10P 1 × 10 7.43 7.49 7.57 7.77
2 × 5 8.39 8.29 8.47 8.51
5 × 2 8.87 8.83 8.80 9.07

10 × 1 9.07 8.88 9.11 9.35

ParkScene (1920 × 1080)

2P 1 × 2 1.97 1.89 1.85 1.85
2 × 1 1.93 1.81 1.83 1.87

4P 1 × 4 3.56 3.46 3.40 3.50
2 × 2 3.72 3.66 3.62 3.64
4 × 1 3.50 3.42 3.44 3.49

6P 1 × 6 5.26 5.14 5.01 5.14
2 × 3 5.12 4.99 4.96 5.15
3 × 2 5.53 5.33 5.39 5.45
6 × 1 5.55 5.46 5.44 5.53

8P 1 × 8 5.72 6.02 5.98 5.90
2 × 4 6.70 6.60 6.57 6.51
4 × 2 6.78 6.50 6.65 6.63
8 × 1 6.77 6.56 6.58 6.75

9P 1 × 9 7.75 6.91 7.10 7.43
3 × 3 7.51 7.17 7.18 7.34
9 × 1 6.70 6.58 6.56 6.60

10P 1 × 10 7.70 7.60 6.47 7.44
2 × 5 7.60 7.46 7.48 7.58
5 × 2 8.86 8.41 8.56 8.55

10 × 1 8.81 8.51 8.31 8.53



Appl. Sci. 2018, 8, 854 17 of 24

Table 6. Speed-up evolution for low resolution video sequences for the tile-based parallel algorithm.

NP Layout Speed-Up

QP = 22 QP = 27 QP = 32 QP = 37

FourPeople (1280 × 720)

2P 1 × 2 1.80 1.77 1.82 1.83
2 × 1 1.90 1.84 1.88 1.98

4P 1 × 4 3.25 3.25 3.42 3.39
2 × 2 3.32 3.25 3.42 3.42
4 × 1 3.73 3.64 3.81 3.76

6P 1 × 6 4.47 4.47 4.86 4.98
2 × 3 4.68 4.64 4.84 5.06
3 × 2 5.08 4.99 5.07 5.13
6 × 1 4.90 4.91 4.97 4.99

8P 1 × 8 4.64 4.44 4.79 5.09
2 × 4 6.23 6.11 6.36 6.67
4 × 2 6.57 6.32 6.59 6.71
8 × 1 6.28 6.21 6.35 6.42

9P 1 × 9 4.51 4.63 4.51 5.02
3 × 3 6.84 6.73 7.12 7.28
9 × 1 6.32 6.29 6.51 6.50

10P 1 × 10 5.80 5.87 5.58 5.64
2 × 5 6.53 6.50 6.67 6.88
5 × 2 7.95 7.84 7.99 8.28

10 × 1 8.63 8.48 8.68 8.94

PartyScene (832 × 480)

2P 1 × 2 1.88 1.95 1.87 1.88
2 × 1 1.76 1.78 1.73 1.75

4P 1 × 4 3.55 3.49 3.27 3.54
2 × 2 3.33 3.29 3.33 3.40
4 × 1 2.94 2.85 2.82 2.94

6P 1 × 6 3.57 3.48 3.32 3.48
2 × 3 4.34 4.25 4.27 4.29
3 × 2 4.45 4.44 4.42 4.41
6 × 1 3.86 3.71 3.65 3.64

8P 1 × 8 6.80 6.73 6.20 6.81
2 × 4 6.22 6.19 5.98 6.21
4 × 2 5.34 5.34 5.26 5.36
8 × 1 5.64 5.32 5.30 5.40

9P 1 × 9 N/A N/A N/A N/A
3 × 3 5.74 5.66 5.25 5.73
9 × 1 5.63 5.42 5.31 5.44

10P 1 × 10 N/A N/A N/A N/A
2 × 5 6.25 6.21 5.65 6.15
5 × 2 7.09 6.85 6.74 6.76

10 × 1 5.56 5.47 5.35 5.30

Regarding R/D performance, in Figure 10 we show the BD-rate results for each tile partitioning
layout using the Bjontegaard method [20]. This value measures the bit rate overhead that introduces the
tile-based parallel algorithm when compared with the sequential version. As can be seen, the bit rate
overhead increases as the number of processes does. This is an expected result because no information
from other previously encoded tiles is available to perform the intra prediction. Square-like tile
partitioning layouts have a better R/D performance than the rest of layouts. This is mainly because in
square-like tile layouts, every single CTU has more neighbors, which are inside the same tile, than in
row-like or column-like tile layouts. Therefore, the redundancies of nearby CTUs can be exploited.
We can conclude, from the information shown in Figure 10, that row-like tile layouts, i.e., layouts
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formed by the division of a frame into 1 column by N rows (1× N layouts), always have the worst
R/D performance.

(a) (b)

(c) (d)

Figure 10. Tile-based BD-Rate with different number of processes and tile partitioning for all
QPs. (a) PeopleOnStreet (2560 × 1600); (b) Tennis (1920 × 1080); (c) Kristen&Sara (1280 × 720);
(d) BasketballDrill (832 × 480).

4.2. Frame-Based Parallel Algorithms Analysis

So as to evaluate both the DMG-AI and the DSM-AI algorithms, we have run our experiments
with 10, 16, 20, and 24 parallel processes. The hardware platform described before consists of 14 nodes
(Distributed Memory (DM) architecture), with 12 cores in each one (Shared Memory (SM) platforms).
Table 7 shows the different combinations tested, where N denotes the number of computing nodes
(DM architecture) and R is the number of processes used in each computing node, so NxR is the total
number of parallel processes. When N is equal to 1, we have a pure SM platform, and when R is equal
to 1, we have a pure DM system. In this framework, the different setups tested are transparent to
the DMG-AI parallel algorithm because all the processing units are MPI processes, regardless of the
memory arrangement. On the contrary, in the DSM-AI algorithm, an NxR configuration means that
each one of the N MPI processes generates R threads (OpenMP processes).

Table 7. Arrangement of processing units.

Processes Num. of Nodes × Num. of Cores

(N × R)

10 (10 × 1) (5 × 2) (2 × 5) (1 × 10)
16 (16 × 1) (8 × 2) (2 × 8) (1 × 16)
20 (20 × 1) (5 × 4 ) (4 × 5) (2 × 10)
24 (8 × 3) (6 × 4) (4 × 6) (3 × 8)

In Table 8, we show the parallel efficiencies obtained for the DMG-AI parallel algorithm using up
to 24 processes for the four QP values considered in our experiments and for BasketballDrill, Traffic,
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Kristen&Sara, and Tennis video sequences. This table illustrates the good parallel performance of the
DMG-AI algorithm, being even better for the lowest resolution video sequence. In the worst case,
24P (4× 6), an average speed-up of 18.2x for Traffic video sequence is obtained, which corresponds to
an efficiency of 76%.

Table 8. Efficiency of the DMG-AI parallel algorithm.

Basketball Traffic

QP 10 Processes

N × R 1 × 10 2 × 5 5 × 2 10 × 1 1 × 10 2 × 5 5 × 2 10 × 1

37 94% 95% 96% 95% 89% 89% 91% 92%
32 94% 97% 98% 97% 86% 88% 90% 89%
27 95% 98% 98% 98% 86% 88% 90% 90%
22 94% 98% 98% 97% 88% 91% 93% 93%

16 Processes

N × R 2 × 8 4 × 4 8 × 2 16 × 1 2 × 8 4 × 4 8 × 2 16 × 1

37 92% 93% 94% 94% 84% 84% 83% 84%
32 94% 95% 95% 94% 83% 83% 83% 83%
27 95% 95% 95% 95% 83% 82% 83% 82%
22 95% 95% 95% 94% 85% 85% 85% 85%

20 Processes

N × R 2 × 10 4 × 5 5 × 4 10 × 2 2 × 10 4 × 5 5 × 4 10 × 2

37 90% 93% 89% 93% 80% 80% 80% 82%
32 91% 94% 94% 95% 78% 80% 80% 81%
27 92% 95% 95% 95% 79% 80% 80% 81%
22 92% 95% 95% 95% 81% 83% 83% 83%

24 Processes

N × R 3 × 8 4 × 6 6 × 4 8 × 3 3 × 8 4 × 6 6 × 4 8 × 3

37 90% 89% 89% 92% 77% 76% 79% 77%
32 91% 92% 92% 94% 76% 75% 78% 76%
27 93% 95% 94% 94% 75% 75% 77% 76%
22 93% 94% 93% 93% 78% 78% 80% 78%

Kristen&Sara Tennis

QP 10 Processes

N × R 1 × 10 2 × 5 5 × 2 10 × 1 1 × 10 2 × 5 5 × 2 10 × 1

37 94% 98% 95% 95% 88% 93% 91% 90%
32 95% 97% 97% 97% 89% 92% 92% 92%
27 95% 97% 97% 97% 92% 95% 94% 94%
22 96% 98% 98% 98% 93% 96% 96% 95%

16 Processes

N × R 2 × 8 4 × 4 8 × 2 16 × 1 2 × 8 4 × 4 8 × 2 16 × 1

37 94% 95% 96% 93% 87% 88% 90% 88%
32 95% 96% 95% 95% 89% 88% 89% 88%
27 95% 95% 96% 94% 91% 92% 93% 92%
22 97% 96% 97% 96% 92% 93% 93% 92%

20 Processes

N × R 2 × 10 4 × 5 5 × 4 10 × 2 2 × 10 4 × 5 5 × 4 10 × 2

37 93% 94% 93% 95% 85% 87% 84% 87%
32 93% 96% 95% 95% 85% 87% 86% 87%
27 93% 95% 93% 95% 88% 90% 89% 91%
22 93% 96% 96% 97% 88% 92% 91% 91%

24 Processes

N × R 3 × 8 4 × 6 6 × 4 8 × 3 3 × 8 4 × 6 6 × 4 8 × 3

37 91% 95% 93% 94% 81% 86% 85% 87%
32 91% 94% 93% 94% 83% 86% 85% 86%
27 92% 94% 93% 94% 88% 90% 89% 89%
22 95% 96% 96% 95% 89% 90% 88% 89%

The efficiency of the DMG-AI algorithm always remains above 75% reaching a maximum efficiency
of 98%. The disk access (both for reading the raw video data and for writing the compressed bitstream)
is a sequential operation, so disk operations may become a bottleneck. The worst situation occurs
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when a high number of processes is used and the amount of video data to read is large (high-resolution
video sequences).

Table 9 shows the efficiencies obtained by the DSM-AI parallel algorithm, the results being quite
similar to those obtained for the DMG-AI algorithm. In general, the DSM-AI algorithm slightly improves
the results obtained by the DMG-AI algorithm, except in the case where there is a high number of
OpenMP threads with respect to the number of MPI processes. In this case, the synchronization
processes performed in the OpenMP parallel sections cause a slight parallel degradation.

Table 9. Efficiency of the DSM-AI parallel algorithm.

PartyScene PeopleOnStreet

QP 10 Processes

N × R 1 × 10 2 × 5 5 × 2 10 × 1 1 × 10 2 × 5 5 × 2 10 × 1

37 94% 97% 96% 96% 89% 92% 92% 91%
32 94% 97% 96% 97% 89% 94% 93% 92%
27 94% 98% 97% 97% 89% 95% 93% 93%
22 95% 97% 97% 97% 88% 94% 93% 93%

16 Processes

N × R 2 × 8 4 × 4 8 × 2 16 × 1 2 × 8 4 × 4 8 × 2 16 × 1

37 93% 94% 94% 92% 84% 85% 85% 84%
32 93% 94% 94% 94% 85% 85% 85% 85%
27 94% 95% 95% 95% 85% 85% 85% 85%
22 94% 94% 95% 94% 85% 85% 85% 85%

20 Processes

N × R 2 × 10 4 × 5 5 × 4 10 × 2 2 × 10 4 × 5 5 × 4 10 × 2

37 91% 94% 92% 93% 80% 81% 80% 83%
32 92% 95% 94% 94% 80% 82% 82% 83%
27 92% 95% 95% 95% 81% 83% 83% 83%
22 92% 95% 95% 94% 82% 82% 82% 83%

24 Processes

N × R 3 × 8 4 × 6 6 × 4 8 × 3 3 × 8 4 × 6 6 × 4 8 × 3

37 90% 91% 90% 93% 73% 77% 77% 76%
32 92% 92% 93% 93% 77% 78% 78% 78%
27 93% 94% 92% 94% 78% 78% 79% 78%
22 93% 94% 93% 94% 78% 78% 78% 78%

FourPeople ParkScene

QP 10 Processes

N × R 1 × 10 2 × 5 5 × 2 10 × 1 1 × 10 2 × 5 5 × 2 10 × 1

37 94% 97% 96% 95% 88% 92% 91% 90%
32 94% 97% 96% 96% 90% 93% 92% 91%
27 93% 95% 95% 95% 92% 93% 93% 93%
22 95% 97% 98% 97% 94% 96% 95% 95%

16 Processes

N × R 2 × 8 4 × 4 8 × 2 16 × 1 2 × 8 4 × 4 8 × 2 16 × 1

37 94% 95% 96% 93% 87% 89% 89% 88%
32 94% 95% 95% 94% 89% 89% 90% 89%
27 93% 94% 94% 93% 90% 91% 90% 91%
22 95% 96% 96% 95% 92% 92% 92% 92%

20 Processes

N × R 2 × 10 4 × 5 5 × 4 10 × 2 2 × 10 4 × 5 5 × 4 10 × 2

37 92% 94% 94% 94% 84% 87% 86% 87%
32 92% 94% 94% 95% 85% 88% 87% 88%
27 91% 93% 93% 93% 86% 90% 89% 90%
22 93% 95% 95% 95% 87% 91% 91% 92%

24 Processes

N × R 3 × 8 4 × 6 6 × 4 8 × 3 3 × 8 4 × 6 6 × 4 8 × 3

37 89% 94% 89% 94% 82% 86% 85% 80%
32 92% 94% 94% 93% 85% 86% 86% 84%
27 91% 92% 91% 92% 87% 88% 88% 88%
22 93% 95% 95% 94% 89% 90% 89% 90%
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4.3. Subpicture-Based vs. Frame-Based Parallel Algorithms

Finally, we will compare both subpicture-based and frame-based algorithms in terms of parallel
and R/D performance. It must be noted that subpicture-based parallel algorithms have been tested
using up to 10 processes, whereas frame-based parallel algorithms have been tested using above 10
processes and up to 24 processes. We have compared both parallel algorithms using a fixed number of
available processing units (10). The results provided for the tile-based algorithm are the average of
the efficiencies obtained with the selected tile layouts. On the other side, the results provided for the
DMG-AI algorithm are calculated as the average of the efficiencies obtained with the different tested
setups (N × R processes).

Figure 11 shows the comparison of the efficiency results. As can be seen, the results obtained
by the frame-based parallel algorithm (DMG-AI) are always better, and taking into account that the
frame-based parallel algorithms do not affect the R/D performance, we can conclude that frame-based
parallel algorithms are always preferable.

In Figure 12, we show the difference of efficiency between the DSM-AI and the tile-based
approaches. The DSM-AI efficiency values are always better than the ones obtained by the tile-based
proposal. For high-resolution video sequences, the DSM-AI parallel algorithm shows a slight
improvement, but when the video resolution decreases, the improvement is quite significant (up
to 37%). In most cases, the best efficiency values are obtained when a low value for the QP is used.
In these cases, the parallel efficiency increases as the workload does.

As far as scalability is concerned, frame-based algorithms clearly outperform subpicture-based
ones. On the one hand, scalability is limited by the resolution of the video sequence in subpicture-based
algorithms, because the video resolution sets the maximum number of parallel processes that can be
used. This effect does not occur in frame-based approaches. On the other hand, for subpicture-based
algorithms, the higher number of tiles or slices per frame there are, the higher the BD-rate
penalty appears. Therefore, we do not have a good scalability with regard to R/D performance
in subpicture-based algorithms. As mentioned before, frame-based proposals do not suffer any
BD-rate increment because they produce the same bitstream than the sequential algorithm.

As shown in Figures 11 and 12, the proposed DMG-AI and DSM-AI algorithms outperform
the analyzed subpicture-based algorithms. Note that the DMG-AI algorithm is specially designed
for heterogeneous memory platforms, whereas the new proposal, the DSM-AI algorithm, is also
suitable for heterogeneous memory platforms. However, it has been designed in order to optimize the
execution inside the multicore processors, including the use of a single multicore.

Figure 11. DSM-AI vs. tile-based efficiency increase.
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Figure 12. Tile-based vs. DMG-AI parallel efficiencies.

In [21], the authors propose a two-stage parallelization speed-up scheme exploiting CTU level
parallelism in order to perform an efficient HEVC Intra encoding. That proposal is based in two main
issues: maximizing encoding speed and minimizing compression performance loss, obtaining and
average speed-up of 5.02x using 8 processes, i.e., an average efficiency of 62.8%. Recently, the authors
in [22] presented an improved version of the mean directional variance in the sliding window algorithm
applied to intra-prediction process, which detects the texture orientation of a block of pixels, allowing
the parallelization at block level. In this approach, the maximum speed-ups obtained are equal to
3.1x and 3.7x using 5 and 10 processes respectively, i.e., the efficiencies are equal to 62% and 37%.
Finally, in [23], the authors propose a collaborative scheduling-based parallel solution, named CSPS,
for HEVC encoding, which includes adaptive parallel mode decision, asynchronous frame-level pixel
interpolation, and multi-grained task scheduling. This recent proposal, has been applied to low delay
coding modes, and it obtains speed-up values of 18.7x, 15.2x, 11.42x, and 7.78x using 24 processes,
for TRAFFI (2560× 1600), PARKSC (1920× 1080), FOURPE (1280× 720), and PARTSC (832× 480),
whereas our new proposed parallel algorithm, the DSM-AI algorithm, obtains better speed-up values,
equal to 19.0x, 21.6x, 22.8x, and 22.5x, respectively, for the same video sequences, the efficiencies
obtained being equal to 79%, 90%, 94%, and 95%, respectively.

5. Conclusions

In this paper, we compared two parallelization proposals of the HEVC encoder. The first one
is based on subpicture partitions (tiles or slices), and they are especially suited for shared memory
platforms. They obtain good speed-up values, although for low resolution sequences, the parallel
scalability decreases. Moreover, the R/D performance decreases as the number of subpicture partitions
increase. The other approach, which is based on frames, is suitable for both shared and distributed
memory architectures. It yields good parallel performance, obtaining efficiency values of up to
97%. However, it outperforms subpicture-based proposals, especially when low resolution video
sequences are encoded by a high number of processes. The frame-based approaches have been tested
using up to 24 processes, showing good scalability without varying the R/D performance. Therefore,
we can conclude that the proposed frame-based parallel algorithms for AI mode outperform parallel
proposals based on subpicture partitions in terms of parallel performance and R/D performance. It is
worth noting that the good scalability of the frame-based approaches and that, if the final application
requires the use of tiles or slices, the use of our frame-based parallel proposals does not prevent
such use. Both frame-based parallel algorithms obtain similar parallel performance, but the DSM-AI
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algorithm provides a wider versatility. Note that, in the DMG-AI algorithm, the number of frames
encoded per node is always the same. However, when using the DSM-AI mode, the number of frames
encoded per node depends on the computational load of the node; on the other hand, the number of
communications decreases and the size of the messages increases. Compared to recent state-of-the-art
approaches, the DSM-AI algorithm obtains better parallel efficiencies. We have observed that the disk
access may become, for a large number of processes, a bottleneck, so, as future work, we will try to
improve the overall parallel performance of the system with the use of a parallel disk access system.
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