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The reference joint position of upper-limb exoskeletons is typically obtained by means of
Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian;
this approach allows exploiting the available Degrees of Freedom (i.e. DoFs) of the
robot kinematic chain to achieve the desired end-effector pose; however, if used to
operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria
are satisfied in the whole human-robot workspace. This paper proposes a motion
planning system, based on Learning by Demonstration, for upper-limb exoskeletons
that allow successfully assisting patients during Activities of Daily Living (ADLs) in
unstructured environment, while ensuring that anthropomorphic criteria are satisfied in
the whole human-robot workspace. The motion planning system combines Learning by
Demonstration with the computation of Dynamic Motion Primitives and machine learning
techniques to construct task- and patient-specific joint trajectories based on the learnt
trajectories. System validation was carried out in simulation and in a real setting with a 4-
DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb
Girdle Muscular Dystrophy. Validation was addressed to (i) compare the performance
of the proposed motion planning with traditional methods; (ii) assess the generalization
capabilities of the proposed method with respect to the environment variability. Three
ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The
achieved results showed a 100% success rate in the task fulfillment, with a high level of
generalization with respect to the environment variability. Moreover, an anthropomorphic
configuration of the exoskeleton is always ensured.

Keywords: motion planning, machine learning, learning by demonstration, dynamics movement primitives,
assistive robotics

1. INTRODUCTION

Understanding trajectory planning in human movements plays a paramount role in upper-limb
exoskeletons for rehabilitation and assistive purposes because of the tight physical human-robot
interaction. A typical strategy for determining the desired trajectory to be tracked by the exoskeleton
in complex tasks, such as the Activities of Daily Living (ADLs), is to replicate human movements
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(An et al., 1988). Joint trajectories from unimpaired volunteers,
caregivers, or therapists can be pre-recorded and later executed
by the robotic system throughout specific mapping methods, i.e.,
spline decomposition (Jiang et al., 2013), or else optimization of
ad hoc developed objective functions (Provenzale et al., 2014).
However, these methods are successful in structured environ-
ments, since they cannot manage variability in the environment
and external perturbations.

For ADLs in unstructured environment, a Cartesian motion
planner can be conveniently adopted (Marchal-Crespo and
Reinkensmeyer, 2009) and a purposely developed mathematical
model of human motor behavior should be formulated in order
to plan the desired trajectories in a way similar to humans. This
is the case, for example, of the minimum jerk criterion (Flash and
Hogan, 1985) or the minimum torque model (Svinin et al., 2010)
for point-to-point reaching tasks.

For the exoskeletons, the approach based on Cartesian
motion planning requires that inverse kinematics (IK) (Kim
et al., 2012) is applied for computing joint motion, with the
consequent increase of the computational burden. Moreover, the
traditional IK algorithm with inverse Jacobian allows exploiting
the available DoFs of the robot kinematic chain to achieve the
desired end-effector pose; however, it does not guarantee that
anthropomorphic criteria in the whole human-robot workspace
are satisfied, especially in non-redundant structures. Alternative
methods that account for anthropomorphic configurations in
the joint space are based on the computation of the swivel angle.
It can be estimated by means of geometric methods (Mihelj,
2006) or analytical methods based on the augmented Jacobian
(Papaleo et al., 2015); however, in the case of non-redundant
exoskeletons (as most of the commercially available ones
(Marchal-Crespo and Reinkensmeyer, 2009)), the computation
of the swivel angle causes the reduction of the number of
Cartesian DoFs to be controlled, since the swivel angle is
computed in lieu of one of the controlled Cartesian coordinates;
as a consequence, this entails a reduction of the success rate
in the fulfilment of the ADLs. Other approaches are based on
hybrid Cartesian joint motion planners (Pattacini et al., 2010);
nevertheless, as for the methods based on the computation of
the swivel angle, they cannot be adopted in non-redundant
exoskeletons without reducing the Cartesian DoFs to be
controlled.

An alternative approach is represented by Learning By Demon-
stration (LbD), where the human subject is observed during
the task execution and the robotic system replicates the learnt
movement. It allows avoiding motion planning in the Cartesian
space and inverse kinematics, but it requires to learn the target
joint configuration to be reached through supervised learning.
In literature, supervised learning methods, based on NNs, are
widely used by researchers to learn the IK of redundant and non-
redundant robots as in Oyama et al. (2001). Due to their adapt-
ability to several contexts, NNs are employed in several robotic
applications. In Li et al. (2017), they are used for redundancy
resolution in presence of noise; in Jin and Li (2016) and Jin et al.
(2017), NNs are adopted for motion control of multiple cooper-
ating redundant manipulators; and in Noda et al. (2014), they are
used for robot motion generation based on data frommultimodal

sensory systems. Nevertheless, to the best of our knowledge, how
learningmethods based onNNs can improve performance of LbD
approaches during the learning of motion features and robot IK is
not fairly explored.

This work proposes a motion planning system grounded on
LbD for generating reference trajectories in the joint space for
upper-limb exoskeletons, starting from the observation of the
human motion during the execution of ADLs. The paper contri-
bution is mainly addressed to extend the LbD approach in Ijspeert
et al. (2013) for the control of upper-limb exoskeletons and to sig-
nificantly improve it by introducing a Neural Network (NN), that
learns the motion features and the robot inverse kinematics. The
proposedmethod offers the following three main advantages with
respect to the available techniques used in literature to plan the
motion of upper-limb exoskeletons (i.e., motion planning in the
Cartesian space and inverse kinematics): (i) it does not require the
formulation of mathematical models of human motor behavior
in order to accomplish the task in a way similar to humans; (ii)
it allows performing the task also in unstructured environments
(where a variability can be caused, for example, by the object
position changes and subject different anthropometries); (iii) it
guarantees the task accomplishment in the feasible workspace
by preserving anthropomorphic configurations of the assisted
human arm.

The proposed motion planner is based on Dynamic Move-
ment Primitives (DMPs), with a well-defined landscape attractor
(Ijspeert et al., 2013). This attractor allows replicating the recorded
trajectory by means of a weighted sum of optimally spaced Gaus-
sian Kernels; weight parameters (DMP parameters) are extracted
from demonstrated movements with a Locally Weighted Regres-
sion (LWR) algorithm and are used to train a neural network
through supervised learning. The neural network has the aim to
define DMP parameters and joint target position and receives
in input context factors (such as object position or task type).
The DMP parameters are then processed by the DMP com-
putation module that provides the exoskeleton reference joint
trajectories.

The proposed motion planner was tested on an upper-limb
exoskeleton during ADLs tasks. The exoskeleton was made of
a 4-DoF shoulder-elbow exoskeleton (i.e., NeuroExos Shoulder-
Elbow Module (NESM) (Crea et al., 2016)) for reaching move-
ments, and a 5-DoF wrist-hand exoskeleton responsible for the
grasping phase. The system was experimentally validated on four
patients with Limb Girdle Muscular Dystrophy (LGMDs). They
were asked to perform one ADL (i.e., the drinking task) and
two activities belonging to the Southampton Hand Assessment
Procedure (SHAP) clinical test (i.e., pouring and lifting a light
sphere, consisting in reach-grasp-move-release a spherical object).
The position of the object to be grasped was acquired by means of
an external camera (Optitrack).

A comparative analysis with the traditional approach based on
path planning and IK for upper-limb exoskeletonswas carried out.
Moreover, the data acquired during the experimental session were
used to assess the generalization capability of the proposedmotion
planning system with respect to the different anthropometry of
the patients and the different object positions. Performance of
the proposed motion planning system was measured through a
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set of performance indicators, consisting of success rate, distance
from target position, distance from the physiological behavior,
and computational burden.

The paper is organized as follows: in Section 2, the exoskele-
ton, the proposed motion planner, and the experimental setup
and protocol are presented. Experimental results are illustrated
and discussed in Section 3 and Section 4, respectively. Finally,
conclusion and future works are reported in Section 5.

2. MATERIALS AND METHODS

2.1. Exoskeletons
The upper-limb exoskeleton used to validate the proposedmotion
planning system is shown in Figure 1. It consists of the NESM 4-
DoF exoskeleton and a 5-DoFWrist-hand exoskeleton, described
in the following.

2.1.1. NESM
NESM is an upper-limb exoskeleton consisting of four active
DoFs addressing the shoulder abduction/adduction (sA/A), flex-
ion/extension (sF/E) and internal/external rotation (sI/E), as well
as the elbow flexion/extension (eF/E) movements (Crea et al.,
2016). Additional passive degrees of freedom and size regulations
are included within the kinematic chain to improve the safety
and wear ability of the device: this system automatically com-
pensates for joint misalignments of the elbow and shoulder com-
plex and allows users with different anthropometries wearing the
device.

Each actuation unit has a series-elastic actuator (SEA), com-
prising a DC motor and reduction gear in series with a custom
spring. Two absolute encoders placed at both sides of the spring
allow sensing the joint torque by measuring the spring deforma-
tion, and at the same time, the encoder mounted more proximally
to the human joint provides the joint angular value. By virtue of
the SEA architecture, both position and torque control strategies
have been implemented.

The sA/A and sF/E actuation units are identical and are able to
withstand peak torques up to 60Nm. Similarly, the sI/E and eF/E

FIGURE 1 | NESM upper-limb exoskeleton with the wrist-hand exoskeleton.

actuation units can deliver up to 30Nm of peak torques. These
featuresmake the exoskeleton suitable to assist users having highly
reduced or null residual motion capabilities of their upper arm.
Notably, in this study, the position control modality is employed
to perform completely passive mobilization of the user’s arm.

Each joint can move within the following range of motion (the
zero configuration iswith the armparallel to the trunk): 0° to−90°
for sA/A and sF/E, −75° to 25° for sI/E and 0° to 120° for eF/E.

2.1.2. Wrist-Hand Exoskeleton
The wrist-hand exoskeleton is composed of two modules, the
hand and the wrist, that can be used separately or in combi-
nation. The wrist exoskeleton guarantees the activation of the
prono/supination movements. It consists of a DC motor with a
reduction stage, which drives a geared ring guide. The guide is
attached to an orthosis that aligns the forearm with the guide axis.
Joint limits are mechanically provided, but, if necessary they can
be reduced via software for increasing the safety in the human-
robot interaction.

The hand exoskeleton has 4 active DoFs: F/E of the index finger
Metacarpophalangeal (MCP) joint, F/E of the middle finger MCP
joint, F/E of the ring and little finger MCP joints, and F/E of the
thumbMCP joint. A linkage mechanism between theM regulator
as well. When a reference MCP and the Proximalinterphalangeal
(PIP) joint is adopted on each finger and is driven by a linear
actuator, for moving both PIP and MCP joints. A unique linear
actuator is used for driving the PIP and MCP joints of both the
third and the fourth fingers. The thumb A/A is fixed in a suitable
position.

The wrist exoskeleton can be easily connected to the shoulder-
elbow exoskeleton. In fact, by simply removing the forearm cuff
from the NESM, the cuff integrated to the wrist exoskeleton can
be attached to the output frame of the elbow actuation unit. The
resulting device is a full-arm robotic exoskeleton.

2.2. Low Level Control (LLC)
The control system used to operate the NESM implements two
control strategies: joint position and joint torque control modes.
When controlled in position, each actuation unit drives the joint
position along a reference value or trajectory. The controller
is based on a proportional-integral-derivative (PID) regulator,
which operates on the difference between the reference joint
angle and the measured one. The output is a current com-
manded to the driver of the SEA actuation unit to provide the
torque necessary to achieve the movement with null steady-state
error.

In the torque control mode, eachmotor is controlled to provide
a certain amount of torque. The closed-loop torque controller
output is dependent on the difference between the desired joint
torque and the measured one, and it is built on a PID regulator
as well. When a reference torque of 0Nm is commanded on
each joint, the device can be used in transparent mode, allowing
the user to freely move the arm. Conversely, the wrist module
and the hand exoskeleton could be controlled only in position;
the controller used to operate these devices is based on a PID
regulator, which operates on the difference between the reference
joint angle and the measured one.
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2.3. Motion Planning Based on LbD for
Upper-Limb Exoskeletons
The proposed motion planning for upper-limb exoskeletons is
shown in Figure 2. A variation of LbD method used in Ijspeert
et al. (2013) is presented. In particular, in this work, differently
from Ijspeert et al. (2013), a combination of DMP and supervised
learning is adopted with the aim of avoiding motion planning
in the Cartesian space and inverse kinematics. The proposed
motion planning consists of two main stages, named off-line
neural network training and DMP computation. In the off-line
neural network training, the trajectories executed by a healthy
human subject, e.g., the therapist or the caregiver, are recorded by
means of motion tracking devices such as magneto inertial sen-
sors or the robot itself when backdriven, and distinctive features,
named DMP parameters, are subsequently extracted using a LWR
algorithm (“Motion recording and DMP parameters extraction”
block in Figure 2). Hence, a neural network is trained through
the Levenberg-Marquardt (LM) supervised learning algorithm in
order to associate DMP parameters and robot joint target position
to context factors taken in input (i.e., object position and task to
be performed).

In the DMP computation, the patient can perform an ADL task
with the assistance of the exoskeleton. Depending on the task and
object position, the trained neural network provides the proper set
of DMPparameters and robot joint target positions for computing
the set of DMPs that best fit the desired task (“DMP computation”
block).

2.3.1. DMP Computation
The computation of the DMPs is obtained through the resolution
of a non-linear second order system, expressed as

τ q̈ = αq (βq (g − q) − q̇) + f (1)

where τ is a time constant,αq andβq are positive constants, q0 and
g are the initial and final points of the trajectory, respectively, and
f is a forcing term that implements the landscape attractor of the
system. In equation (1), q refers to a generic joint position of the
robot that needs to be computed for each joint of the exoskeleton
(i.e., q1, q2 . . . q5).

A possible formulation of the forcing term, namely the land-
scape attractor (Ijspeert et al., 2013), is

f(x) =
∑N

i=1 Ψi(x)ωi∑N
i=1 Ψi(x)

x(g − q0) (2)

where ωi is the DMP parameters, namely the weight parameters
adopted to reconstruct the recorded motion, while x is the state
variable of the system thatmakes equation (1) a time-independent
system. It is defined as

τ ẋ = −αxx (3)

where αx is a positive constant. On the other hand, Ψi(x) is
Gaussian kernels expressed as

Ψi (x) = exp
(

− 1
2σ2

i
(x − ci)2

)
(4)

where σi, ci, and N are the width, the centers, and the number
of Gaussian functions, respectively. The state variable x as well as
centers ci range between 0 and 1.

As in our previous work (Lauretti et al., 2017a), an optimized
spatial allocation of the Gaussian kernels is adopted, depending
on the complexity of the recorded trajectory. Hence, ci and σi are
defined as

c(x) =

∫ x
0 Vc(z) dz

||
∫ 1
0 Vc(z) dz||

(5)

FIGURE 2 | Block scheme of the proposed motion planning system.
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Vc(z) = 1 − αz

P∑
k=1

exp (−βz (z − zk)) (6)

σ(x) = γz
Vc(x)
N + δz (7)

ci = c
(

i
N

)
(8)

σi = σ

(
i
N

)
(9)

where αz, βz, γz, and δz are positive constants, P is the number of
critical points of the recorded trajectory, and zk is the normalized
time instant of each critical point. A graphical representation of c
and σ functions is provided in Figure 3.

2.3.2. Off-Line Neural Network Training
2.3.2.1. DMP Parameters Extraction
DMP parameters ωi are extracted through a LWR algorithm
(Schaal and Atkeson, 1998). The recordedmotion and derivatives,
i.e., qd, q̇d, and q̈d are inserted in the forcing term in equation (2)
as follows

ft = τ q̈d − αq (βq (g − qd) − q̇d), (10)

and a function approximation problem is formulated. Hence, a
locally weighted quadratic error is minimized by means of the
following cost function

Ji =
P∑

t=1
Ψi(t)(ft(t) − ωiϵ(t))2 (11)

ϵ(t) = x (g − q0) (12)

and ωi parameters that make ft as close as possible to f are found,
for each kernel function Ψi(t), in order to reconstruct the trajec-
tory qd, q̇d, and q̈d, through q, q̇, and q̈, respectively. In equation
(12), ϵ is the error between the target joint position to be reached
g and the initial joint position of the exoskeleton q0.

2.3.2.2. Neural Network
A Levenberg-Marquardt algorithm (LM) has been adopted for
the off-line neural network training (Lourakis, 2005). Given a

FIGURE 3 | c and σ functions for the optimal allocation of the Gaussian
Kernels. X* and T* are the state value and time instant corresponding to the
critical point (Lauretti et al., 2017a).

parameter vector p ∈ ℜn and a measurement vector x ∈ ℜm,
the LM algorithm finds the functional relation (f ) that maps the
parameter vector p into an estimated measurement x̂ (x̂ = f(p)).
A linear approximation of f in the neighborhood of p is provided
by a Taylor series expansion

f(p + δp) = f(p) + Jδp + o(p) (13)

Neglecting the higher order terms o(p), equation (12) could be
approximated as

f(p + δp) ≈ f(p) + Jδp (14)

where J is the Jacobian matrix δf(P)
δP .

At each step of the iterative process, LM looks for the δp that
minimizes the error defined as ∥x − f(p + δp)∥ = ∥x − f(p) +
Jδp∥ = ∥ϵ−Jδp∥. The error isminimizedwhen Jδp–ϵ is orthogonal
to the column space of J, namely when the following condition
holds

JT(Jδp − ϵp) = 0 (15)

JTJδp = JTϵp. (16)

In the LM method, equation (16), called normal equation, is
written as

Nδp = JTϵp (17)

N = µ + JTJ (18)

where JTJ and µ are called damping and damping term, respec-
tively. One iteration of LM algorithm consists of finding an
acceptable value of the damping term that reduces the error ϵp.
In other words, if δp computed from equation (17), leads to a
reduction of the error ϵp, the damping term is decreased and the
following iteration is processed; otherwise, the damping term is
increased and equation (17) is solved again. The LM algorithm
stops running when, at least, (i) JTϵp of equation (17) is lower
than a preset threshold ϵ1 or (ii) δp is lower than a threshold ϵ2
or (iii) a maximum number of iteration NMAX is reached. For the
sake of brevity, the complete LM algorithm is not shown; further
theoretical details about the implemented method could be found
in Lourakis (2005).

The structure of the adopted neural network is reported in
Figure 4. A two layer feed-forward network with M sigmoid
hidden neurons and N+ 1 linear output neurons is used for each
joint and for each task the user wants to perform. The inputs of
each network are the Cartesian target positions to be reached, Px,
Py, and Pz (e.g., object position); on the other hand, the outputs
of each network are the DMP parameters, ω1, ω2. . .ωN, and the
target joint angles, Qi (N is the number of DMP parameters
computed for the i-th joint).

2.3.2.3. Adapting NN Outputs to Different Subject
Anthropometries
In order to adapt the proposedmethod to different human bodies,
a recursivemethod that adjusts theNNoutputs for distinct subject
anthropometries was used. Its functioning principle is shown in
Figure 5.
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FIGURE 4 | Structure of the adopted neural network.

+
-

Subject1 

Forward

Kinema�cs

Subject2 

Forward

Kinema�cs

-
+

Neural Network

Trained on Subject1

loop

FIGURE 5 | Block scheme of the recursive method used to adjust the NN
outputs for different subject anthropometries.

In the block scheme, Pd is the Cartesian target position to be
reached, Q is the output configuration of the robot joints, subject
1 is the person involved in the NN training phase while subject
2 is the assisted person, who wants to perform an ADL thanks
to the exoskeleton assistance. It is worth noting that, with the
aforementioned exoskeletons and the described tasks, two loops of
the recursive algorithm are suitable to obtain an acceptable error
in reaching the target position (less than 10mm).

2.4. Traditional Path Planning and IK
A simple path planning, based on a third-order polynomial func-
tion, was implemented in order to generate Cartesian trajectories
with null velocity at the beginning and at the end of themovement.
It can be written as

z = −2
zf − zi
D3 t3 + 3

zf − zi
D2 t2 + zi (19)

where z is the desired exoskeleton Cartesian pose, zf and zi are the
final and initial desired Cartesian pose, respectively, and D is the
motion duration.

Hence, two IK methods were adopted to generate the reference
joint position for the exoskeleton. They are IK based on the com-
putation of the swivel angle (named in the following IK with swivel
angle) and IK with the inverse Jacobian (named in the following
IK Inverse Jacobian).

2.4.1. IK with Swivel Angle
The IK algorithm with swivel angle was ad hoc developed for a
4-DoF spherical-revolute (S-R) manipulator (i.e., the shoulder-
elbow exoskeleton), based on geometrical considerations. An
additional constraint was imposed to calculate the analytical solu-
tion for the last revolute DoF of the upper-limb exoskeleton (i.e.,
the wrist prono-supination). For the sake of clarity, the Denavit-
Hartenberg model and parameters of the upper-limb exoskeleton
are reported in Figure 6.

The IK algorithm for the shoulder-elbow exoskeleton manages
three Cartesian coordinates and one orientation coordinate and
consists of the following steps:

• Being the target position known (vector p⃗), the solution for the
elbow angle is derived geometrically:

q4 = π − acos

(
d23 + d25 − |⃗p|2

2d3d5

)
(20)

• The orientation coordinate is a free parameter, (γ), introduced
for guaranteeing anthropomorphic criteria and is defined as the
angle, on the frontal plane (x0–y0 in Figure 6), between the
plane containing the upper arm and forearm and the frontal
plane. Once γ is chosen, two possible configurations of the
elbow (i.e., left or right) allow the arm lying in the chosen plane:
the solution with the four angles in the physiological range is
selected.

• Then, the shoulder joint angles can be derived from forward
kinematics:

q1 = atan
(
yo3
xo3

)
(21)

q2 = acos
(
zo3
d3

)
(22)

q3 = −arccos
(
zee − d3 cos q2 − d5 cos q2 cos q4

d5 sin q4 sin q2

)
(23)

• The wrist prono-supination angle is calculated, by imposing a
constraint on the hand orientation. For the addressed tasks (i.e.,
drinking, pouring, reaching-grasping-moving-releasing of the
sphere), two configurations were considered:

(1) Palm of the hand pointing downward (for pouring and
sphere reaching-moving):

q5 = arctan


cos q4(cos q1 sin q3 + cos q2 cos q3 sin q1)

+ sin q1 sin q2 sin q4
cos q2 sin ϑ1 sin q3 − cos q1 cos q3


(24)

(2) Palm of the hand pointing left (for drinking):

q5 = arctan

 cos q1 cos q3 − cos q2 sin q1 sin q3
cos q4(cos q1 sin q3 + cos q2 cos qa3 sin q1)

+ sin q1 sin q2 sin q4


(25)
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1 + /2 0 0 /2

2 + /2 0 0 − /2

3 3 0 − /2
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5 5 0 − /2

FIGURE 6 | NESM reference frames positioning according to the Denavit–Hartenberg (D–H) convention.

2.4.2. IK with Inverse Jacobian
The IK algorithm with inverse Jacobian is well-described by the
following equation (Siciliano et al., 2010),

q̇ = J−1
A (q)(ẋd + Ke) (26)

where J−1
A is the analytical inverse Jacobian computed on the

kinematic chain of Figure 6, q and q̇ are the joint angle and its
derivative, respectively, ẋd is the desired velocity in the Cartesian
space, K is a positive definite matrix (usually diagonal), and e is
the operational space error defined as e= xd–xe. The desired joint
configuration q is obtained by numerically integrating equation
(26) through the Euler method.

2.5. Experimental Setup
The experimental platform for the validation of the proposed
motion planning system based on LbD is shown in Figure 7.

A user graphical interface is used to show the action to perform
to the subject. The control system architecture consisted in a
finite-state machine, which divides the main task (i.e., drinking,
pouring and reach-grasp-move-release a sphere) into several ele-
mentary actions (corresponding to the subtasks listed in Table 1)
that the different devices can accomplish (e.g., waiting for the
trigger, reaching the glass, grasping, etc.). Each subtask is triggered
by the user by means of the combined M-IMU/EMG interfaces,
letting him/her to control the exoskeletons. An abort function
was also implemented in the state machine to safely abort the
execution of the task at any time.

The communicationwithin the subsystems composing the plat-
form is managed by the Yet Another Robotic Platform (YARP)
messaging system. The motion commands acquired by the user
are sent, through the YARP server, to the exoskeletons. All the
acquired data are synchronized and saved under YARP.

The platform components are shown in Figure 8 and are
detailed in the following.

2.5.1. User Interface
The interface adopted to detect the user movement intention is
based on the combined use of 2 push-buttons and 2 M-IMUs
(Lauretti et al., 2017b).

The 2 push-buttons were placed on a table in order to be
activated by the index and the thumb fingers and to be used as a
switch. Moreover, the two M-IMUs (XSens MTw) were placed on
the user trunk and head in order to detect his/her neck motion.
An Awinda Station was used to record at 100Hz of synchronized
wireless data from the two M-IMUs.

By means of the developed interface the user may exploit: (i)
the head yaw motion in the negative direction to operate the
upper-limb exoskeleton movements and the head yaw motion in
the positive direction to abort the task; (ii) the index finger and
thumb residual motion to trigger the hand opening and the hand
closing.

2.6. Experimental Protocol
2.6.1. Off-Line Neural Network Training
The developed neural network was trained off-line on a healthy
volunteer subject (with upper arm length LUpper Arm = 0.33m and
forearm length Lforearm = 0.3m). He was asked to perform the
drinking task, with 41 different glass positions (Figure 9A) and
two activities belonging to the SHAP clinical test, i.e., pour-
ing (for 15 different positions of the glass and the bottle as in
Figure 9B) and reach-grasp-move-release a sphere (for 25 dif-
ferent positions of the sphere as in Figure 9C). Each task was
performed 5 times per each object position and arm motion was
recorded. The shoulder motion, i.e., the sA/A, sF/E, sI/E, and
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FIGURE 7 | Block scheme of the platform.

TABLE 1 | Tasks description.

Task 1: Drinking

subtask 1-1 reach the glass
subtask 1-2 reach the mouth
subtask 1-3 reach the table for releasing the glass
subtask 1-4 go back to the rest position

Task 2: Pouring

subtask 2-1 reach the bottle
subtask 2-2 pour the water into the glass
subtask 2-3 reach the table for releasing the bottle
subtask 2-4 go back to the rest position

Task 3: SHAP sphere

subtask 3-1 reach the sphere
subtask 3-2 move the sphere to another position on the table
subtask 3-3 go back to the rest position

eF/E movements were recorded through the NESM used in trans-
parent mode; conversely, the wrist Prono-Supination wP/S was
recorded by means of two M-IMUs placed on the subject forearm
and hand.

About 70% of the recorded data was used to train the neural
network; the remaining 30% was used to validate and test the
neural network in order to avoid over-fitting issues.

2.6.2. DMP Computation and Control
The experimental session was aimed to measure performance of
the proposed motion planning system, compare with the tradi-
tional approach based on inverse kinematics described in Section
2.4 and assess generalization capability. The system was tested
during the fulfillment of the same ADLs used for training, i.e.,
drinking, the pouring, and reach-grasp-move-release a sphere.
In the following, they are named task 1, 2, and 3, respectively.
Additionally, each task is divided into a number of subtasks listed
in Table 1.

The validation was performed in simulation and in the real
setting with patients. Simulation tests allowed evaluating system

FIGURE 8 | A representative subject performing the task (the subject signed
an informed consent document to authorize publication of this picture).

performance in the whole human-robot workspace (238, 75, and
125 object positions were considered for task 1, 2, and 3, respec-
tively). On the other hand, in the real setting, system performance
was assessed on four patients with Limb Girdle Muscular Dystro-
phy (LGMDs). They, aged 38.5 on average (Standard Deviation
14.6), volunteered to participate in this study. The experimental
protocol was approved by the local Ethical committee (Comitato
Etico Università Campus Biomedico di Roma, reference number:
01/17 PAR ComEt CBM), by the Italian Ministry of Health (Reg-
istro—classif. DGDMF/I.5.i.m.2/2016/1096) and complied with
the Declaration of Helsinki. The subjects were asked to perform
three repetitions of the three tasks thanks to the assistance of the
4-DoF upper-limb and 5-DoF wrist-hand exoskeletons (3 object
positions for each task were considered in this case).
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2.6.2.1. Comparative Analysis (CA) with Inverse Kinematics
Methods
The CA was aimed to measure performance of the proposed
motion planning based on LbD during the control of the exoskele-
ton and compare the results with the traditional approaches based
on path planning and inverse kinematics described in Section 2.4.
The comparative analysis (CA) was carried out in simulation on a
subject modeled with 30 cm upper arm and forearm lengths and
with 238, 75, and 125 different object positions.

2.6.2.2. Generalization Capability Assessment (GCA)
The GCA was aimed to evaluate the generalization level of the
proposed motion planning with respect to the different anthro-
pometries of the patients and the different object positions. First,
it was tested in simulation environment (GCA–sim) for 238,
75, and 125 object positions (for task 1, 2, and 3 respectively)
per 25 different subject anthropometries, i.e., the combination of
the following upper arm and forearm lengths: LUpper Arm = 30 cm,
32 cm, 34 cm, 36 cm, 38 cm and Lforearm = 30 cm, 32 cm, 34 cm,
36 cm, 38 cm. Subsequently, the proposed motion planning was
tested on the four patients (GCA–real), with LUpper Arm = 33 cm
and Lforearm = 30 cm, 30 cm, 35 cm, 37 cm, for 3 object positions
per task.

System performance was measured through three quantitative
indicators reported below.

2.6.2.3. Performance Indices
The proposed performance indicators are: (i) Position Err1,Orien-
tation Err1, Position Err2, Orientation Err2, (ii) PhJL (iii) Success
Rate and (iv) mean cycle time. They are aimed at evaluating (i)
distance from target position, (ii) distance from anthropomor-
phic configurations, taking into account the physiological joint

limits, (iii) the success rate of the task execution, and (iv) the
computational burden.

2.6.2.4. Distance from Target Position
The error was measured during subtasks 1-1, 2-1, 3-1, and 3-2
(Table 1) as

Position Err =
1
2

√
(xt − x)2 + (yt − y)2 + (zt − z)2 (27)

Orientation Err = ∥αt − α∥ (28)

where xt, yt, and zt are the coordinates of the target position and
x, y, and z are the coordinates of the actual position reached by
the robot end-effector; αt is the desired angle α that needs to be 0
for a successful task fulfillment; α is illustrated in Figure 10 and
is defined for subtask 1-1 and 2-1 as

α1 = acos
(

XT
eeY0

∥Xee∥ ∥Y0∥

)
(29)

Conversely, for subtask 3-1 and 3-2 α is defined as

α2 = acos
(

ZT
eeY0

∥Zee∥ ∥Y0∥

)
(30)

where Y0, Xee, and Zee are defined in the base reference frame
[XB, YB, ZB] as Y0 = [0, 1, 0], Xee = Tee

B [1, 0, 0, 1] and Zee =
Tee
B [0, 0, 1, 1] (Tee

B is the base/end-effector transformation matrix).
For subtask 2-2, the position and orientation error are

expressed as

Position Err2−2 =
1
2

√
(xbottle − xglass)2 + (zbottle − zglass)2 (31)
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A B C

D E

FIGURE 10 | (A) a graphical representation of the end-effector and the base reference frame is shown; (B) the α angle for task 1-1, 2-1 is shown; (C) the α angle for
task 3 is shown; (D) The base reference frame and bottle, end-effector, and glass reference frames are shown; (E) the β angle for task 2-2 is shown.

Orientation Err2−2 = ∥βt − β∥ (32)
xbottle
ybottle
zbottle
1

 = Tee
B Tbottle

ee


0
0
0
1

 (33)

β =
π

2
− acos

(
XT
eeY0

∥Xee∥ ∥Y0∥

)
(34)

where xbottle, zbottle, xglass, and zglass are expressed in the [XB, YB,
ZB] reference frame (Figure 10), Tbottle

ee is the end-effector/bottle-
tip transformationmatrix during the whole subtask 2-2 (i.e., when
the hand exoskeleton is grasping the bottle) and βt is the desired β
that needs to range from0 to π

3 in order to successfully accomplish
the pouring task. Thus, defining βt = 0, an acceptable value of the
orientation error, for a successful task fulfillment, ranges from 0
to π

3 .

2.6.2.5. Distance from the Physiological Joint Limits
The distance from the physiological joint limits is measured to
assess the level of anthropomorphism of the reached configura-
tion during motion. It is expressed as

PhJL =
∥∥∥∥2(qi − q̄i)
qiM − qim

∥∥∥∥ (35)

where qi is the actual position of the i-th joint, qiM and qim are the
upper and lower physiological limit of the i-th joint, respectively,
and q̄i is the mean value between qiM and qim. An acceptable value
of PhJL for the considered tasks ranges in between 0 and 1.

2.6.2.6. Success Rate of the Task Execution
The success rate of the task execution is evaluated as

Success rate =
Nsucc

Ntot
· 100 (36)

where Nsucc is the number of trials successfully accomplished and
Ntot is number of all the performed trials. Trials of tasks 1 and
3 are considered successfully accomplished if all the following
conditions are satisfied:

• Position Err≤ 15mm,
• Orientation Err≤ π

12 rad,
• 0≤ PhJL≤ 1.

Conversely, trials of Task 2 are considered successfully accom-
plished if all the following conditions are satisfied:

• Position Err2−1 ≤ 15mm,
• Orientation Err2−1 ≤ π

12 rad,
• Position Err2−2 ≤ 30mm (i.e. the glass radius),
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• 0≤Orientation Err2−2 ≤ π
3 rad,

• 0≤ PhJL≤ 1.

The aforementioned ranges were experimentally retrieved.

2.6.2.7. Computational Burden
The computational burden of the three compared methods is
evaluated through the mean cycle time; it is the time required
to complete one cycle of the algorithm that computes the desired
joint trajectory starting from the object position and the task type.
The computational time of the 3 methods was evaluated under
the same hardware conditions (Processor: Intel(R) Core(TM)2
Duo CPU 3.00GHz) and development environment (MATLAB
R2014b).

2.6.2.8. Statistical Analysis
For motion planner comparative analysis, mean value and SD of
the computed performance indices were calculated for each task
on the different object positions and subject anthropometries.
For the generalization tests, mean value and SD of the computed
performance indices were also calculated for all the subjects and
the number of repetitions of each task. A statistical analysis based
on Wilcoxon paired-sample test was performed for the compara-
tive analysis between the proposed motion planning system and
the traditional motion planner based on inverse kinematics. The
analysis was carried out onmultiple comparisons with Bonferroni

correction; hence, significance was achieved for p-value< 0.05/nc,
where nc is the number of multiple comparisons.

3. RESULTS

The results of the comparative analysis are reported in Figure 11.
In particular, mean value and standard deviation of the position
error, orientation error, and PhJL computed on the 238, 75, and
125 object positions (for task 1, 2, and 3, respectively) are reported.

One can observe that the DMP-based control always exceeded
the other two algorithms based on inverse kinematics in terms
of success rate. The DMP-based control always achieved 100%
while the IK inverse Jacobian reached 71.4% and the IK swivel
angle reached 84.7%. The differences are statistically significant
with p-value< 0.0083 (for the DMP-based control compared to
IK inverse Jacobian p-value= 0.0031 and for DMP-based control
compared to IK swivel angle p-value= 0.0045).

On the other hand, as expected, the DMP-based control suffers
from a position error higher than the one achieved with the other
two algorithms (this difference is statistically significant with p-
value= 0.0012 for theDMP-based control compared to IK inverse
Jacobian and p-value= 0.0008 for DMP-based control compared
to IK swivel angle), for all the subtasks except for subtask 2-2.

Indeed, about the position error of the subtask 2-2, the results
achieved with the DMP-based control are comparable to the one
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FIGURE 11 | Experimental results obtained for CA. The red lines denote the range within which the task is considered successfully accomplished.
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TABLE 2 | Experimental results obtained for GCA.

GCA–sim GCA–real

Task 1 Position Err [mm] 2.7±0.4 3.9 ± 0.5
Orientation Err [rad] 0.14 ± 0.01 0.164 ± 0.008
PhJL 0.51 ± 0.03 0.64 ± 0.04

Task 2-1 Position Err1 [mm] 3.2 ± 0.9 4.0±3.1
Orientation Err1 [rad] 0.10 ± 0.07 0.116 ± 0.05

Task 2-2 Position Err2 [mm] 19 ± 6 21 ± 5
Orientation Err2 [rad] 0.57 ± 0.07 0.5 ± 0.1

Task 2 PhJL 0.56 ± 0.04 0.64 ± 0.05

Task 3 Position Err [mm] 7.3 ± 1.2 9.5 ± 1.9
Orientation Err [rad] 0.157 ± 0.02 0.14 ± 0.02
PhJL 0.6 ± 0.4 0.5 ± 0.36
Success rate [%] 100 100

achieved with IK inverse Jacobian (p-value= 0.09), but are better
than the one achieved with IK swivel angle (p-value= 0.0033).

Conversely, the orientation error achieved for each task with
the DMP-based control is comparable to the one achieved with IK
with swivel angle (p-value= 0.12). The difference is statistically
significant between the orientation error achieved by the DMP-
based control and the one achieved with IK inverse Jacobian,
which is lower (p-value= 0.0028).

Moreover, the results clearly show that the DMP-based con-
trol and IK with swivel angle ensure a more anthropomorphic
configuration than IK inverse Jacobian, measured through PhJL.
The differences are statistically significant, with p-value= 0.0024
for the comparison between DMP-based control and IK inverse
Jacobian and p-value= 0.0019 for the comparison between IK
swivel angle and IK inverse Jacobian.

Finally, considerations about the computational burden of the
three methods have been made; a mean cycle time of 0.4ms,
7.2ms, and 0.1ms for theDMP-based control, IK inverse Jacobian,
and IK with swivel angle, respectively, has been estimated. As
expected, IK inverse Jacobian has a higher computational burden
compared the other two methods, since it is an iterative method.
Conversely, it is interesting to note that the proposed DMP-based
method, once trained, has a relatively low computational burden
(comparable to the geometrical approach based on the swivel
angle) since the DMP resolution is not computationally heavy.

The experimental results of the GCA are shown in Table 2.
Mean value and standard deviation of position error, orientation
error, and PhJL are reported. They were computed for GCA–sim
on 238, 75, and 125 object positions (for task 1, 2, and 3, respec-
tively) and 25 different subject anthropometries. Instead, for
GCA–real they were calculated on the four subjects and 3 object
positions for each task. It is interesting to note that performance
achieved in the real setting are very close to the simulation results;
moreover, the proposed motion planning based on DMP has a
high generalization level with respect to the different object posi-
tions and subject anthropometries, since the success rate achieved
for the 3 task is 100%.

4. DISCUSSIONS

The comparative analysis (Figure 11) showed that the IK inverse
Jacobian has better performance than the DMP-based control in

terms of position and orientation error, but it does not guarantee
physiological configuration and always the success of the oper-
ation in the whole human-robot workspace. Conversely, the IK
with swivel angle reached better results than DMP-based control
in terms of position and orientation error for tasks requiring the
control of only one orientation parameter (e.g., tasks 1, 2-1 and
3). Instead, it increased in more complex tasks that required the
control of more than one orientation parameter (task 2-2).

Nevertheless, it is worth pointing out that the position error
obtained with the DMP-based control (even though higher than
the traditional approaches) is fully compatible with the considered
application domain which does not require very high accuracy. In
fact, it is shown in the literature that accuracy of human move-
ments during the execution of ADLs is around 1-2 cm (Merlo
et al., 2013). The achieved position error ismoreoverwell balanced
by the very high success rate and the guarantee of an anthropo-
morphic configuration (which also entail system reliability and
safety during the task fulfilment).

Furthermore, the high generalization level of the proposed
approach ensures higher robustness to the environmental changes
than the two other traditional methods, especially the one based
on the computation of the swivel angle, which needs to be a pri-
ori specified. A geometrical approach for inverting kinematics
(Section 2.4) has the clear advantage of a low computational bur-
den, but it is not guaranteed that it can be easily applied on all the
kinematic chains. Conversely, the proposed DMP based method
offers the advantage of being applicable to any kinematic chain,
thanks to the offline training, and has a good computational time
(which is comparable with the IK swivel angle and significantly
lower than the IK algorithm with inverse Jacobian).

5. CONCLUSION

A learning by demonstration method for planning motion
of upper-limb exoskeletons was presented in this work. It is
grounded on the computation of DMPs and machine learn-
ing techniques to construct the task- and patient-specific joint
trajectories based on the learnt trajectories. Distinctive fea-
tures, namely the DMP parameters, were firstly extracted from
the motion recorded during certain activities performed by
a human subject wearing the upper-limb exoskeleton. They
were subsequently used, together with the recorded joint angles
and Cartesian positions, to train a supervised neural network
(a two layer feed-forward network). The neural network pro-
vided the more appropriate set of DMP parameters to gener-
ate the task- and patient-specific trajectories of the exoskeleton
joints.

The proposed motion planning was preliminarily validated
in simulation and later experimentally validated on 4 patients
with LGMDs, who used the combined M-IMU/EMG interface
for controlling the upper-limb exoskeleton. The validation session
was aimed to (i) assess performance of the proposed motion
planning system by means of quantitative indicators and compare
it with traditional methods used to operate upper-limb exoskele-
tons, which are based on path planning and inverse kinematics
(IK inverse Jacobian and IK swivel angle); (ii) investigate the
generalization level of the proposed approach with respect to
the variability in the experimental scenario, given for example
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by different anthropometry of the patients and different object
positions.

The results achieved for the comparative analysis showed that
the DMP-based control guarantees a 100% success rate in the
task fulfillment, with an acceptable position and orientation error
for the targeted application. Moreover, it also ensures that the
exoskeleton always has configurations within the physiological
joint limits, differently from methods based on path planning
and inverse kinematics. Furthermore, the computational time
required by the proposed approach is lower than the one required
by the IK algorithm with inverse Jacobian and comparable with
the IK with swivel angle.

Finally, the results achieved in simulation as well as in the
experimental setting also showed a high generalization level of the
DMP based motion planning with respect to the different object
positions and subjects anthropometries. A success rate of 100% for
all tasks was reported.

Future works will be addressed to extend the study to a higher
number of patients and grasping and manipulation tasks, by
applying the proposedmotion planning approach also to the hand
exoskeleton (which in this study was used to perform grasping
tasks).
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